
Data Ingestion and Inspection for Smart City
Applications

Pierfrancesco Bellini, Daniele Bologna
Department of Information Engineering, DISIT

University of Florence, Italy
pierfrancesco.bellini, Daniele.bologna@unifi.it

Paolo Nesi, Gianni Pantaleo
Department of Information Engineering, DISIT

University of Florence, Italy
paolo.nesi, gianni.pantaleo@unifi.it

Qi Han
Department of Computer Science

Colorado School of Mines, Golden, CO 80401 USA
qhan@mines.edu

Michela Paolucci
Department of Information Engineering, DISIT

University of Florence, Italy
michela.paolucci@unifi.it

Abstract—Smart cities are distributed heterogeneous systems
of systems connected to each other via a variety of heterogeneous
data streams involving multiple stakeholders and organizations.
This complexity is reflected also in the data that have to be
managed to provide a concrete and useful real time service to the
citizens. The data ingestion phase is critical for the whole services,
since it has to preserve the information, connect the new data with
old data and establish right connections with city entities. This
paper describes data ingestion and inspection in the Snap4City
open source scalable Smart aNalytic APplication builder, with
a specific focus on how heterogeneous data is represented, how
its quality is inspected, and how to develop ingestion procedures
in an efficient manner. The Snap4City ingestion processes are
based on a semantic and unified data ingestion model, capable
of aggregating different types of data. A performance comparison
of different data ingestion modalities is presented.

Index Terms—smart city, data ingestion, data inspection

I. INTRODUCTION

Smart cities are distributed heterogeneous systems of sys-

tems, ranging from IoT Networks to front end distribution.

Smart Cities are managed by multiple stakeholders and or-

ganizations sometimes with competing objectives, and are

exploited by city users including citizens, tourists, commuters,

students, operators, etc. One major challenge for smart cities

solutions is to collect and manage heterogeneous multi-

dimensional data sources, ensuring interoperability of data

represented in any format and transmission protocol. Many

applications in the smart city context [4], [7], [10] have been

developed, but they often take a vertical approach and focus

on a specific domain such as Smart Power Grids [2], smart

parking [3], smart meters [10], [12], or roadside assistance

[5]. A typical smart city system presents a multitude of

data providers, data exchange modalities and licenses. These

include IoT/IoE, Open Data portals, social media, private

The authors would like to thank the European Union’s Horizon 2020
research and innovation program for funding the “Select4Cities” PCP project
(within which the Snap4City framework has been supported) under grant
agreement No 688196, and also all the companies and partners involved.
Snap4City and Km4City are open technologies and research of DISIT Lab
https://www.snap4city.org

and/or public data, GIS, city utilities, etc. To manage all

these aspects, many IoT systems and big data frameworks put

emphasis on the life cycle of data [3], [6]. Give importance

to the life cycle approach is fundamental to identify problems

in data gathering, thus having the possibility to contact a data

provider in case of missing or low quality data, or tracing back

to the data source to assign the right user license on a single

data, etc. [2], [3]. In smart cities, a big data infrastructure must

be instrumented with advanced data gathering flow processes

taking information from different data providers and consider-

ing a set of big data requirements, such as those classified in

[9], [11], [13]: i) volume, ii) velocity, iii) variety, iv) variability

and (v) veracity (data quality). Additional aspects are related

to semantic data aggregation, data redundancy, fault tolerance,

licences of use, data protection, real time queries on the

Knowledge Base, data analytic and visualization or GIS-based

visualization, drill down on data, etc. The work presented in

this paper focuses on data ingestion and inspection developed

in the Snap4City framework, [14], [15]. While most existing

works have adopted a simple NoSQL for data management,

in Snap4City a multimodal approach is developed, performing

data ingestion and applying semantic reconciliation strategies

to uniformly take both dynamic static data from traditional

services such as rest API, WS, FTP via PULL protocols as

well as IOT data using PUSH protocols. This paper describes

the process of ingestion of the heterogeneous data managed

by the Snap4City platform. Moreover, a unified data ingestion

model to accelerate these processes is described. In Section

II, an overview of the Snap4City system is introduced; in

Section III, the data Ingestion process model is described.

Section IV provides a detailed description of the data ingestion

model. In Section V, a performance comparison of different

data ingestion modalities is provided. Section VI concludes

the paper.

II. SNAP4CITY SYSTEM OVERVIEW

Snap4City has been developed to provide many online ser-

vices and suggesting guidelines to involve all different kinds of

238

2020 IEEE International Conference on Smart Computing (SMARTCOMP)

978-1-7281-6997-2/20/$31.00 ©2020 IEEE
DOI 10.1109/SMARTCOMP50058.2020.00052

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Snap4City Smart City Services Development Phases.

organizations (e.g., Research Centers and Universities, small

and large industries, public administrations and local govern-

ments) and citizens (city operators, companies, tech providers,

corporations, advertisers, city users, community builders, etc.)

[14], [16]–[19]. It adopts a Quadruple Helix approach [16],

[17] as shown in Fig.1. The Snap4City process consists in the

analysis of the requirements and needs involving all the city

decisors and data providers to establish what types of data are

needed and/or available. After that the data ingestion processes

are realized and described in details in section III. Semantic

integration and standardization is then carried out and is at

the basis of the Data Analytics and Algorithm Development

processes, such as predictions and high performance analysis.

Snap4City is compliant with GDPR (General Data Protection

Regulation of the European Commission), it is capable to

manage a variety of data having different licensens. Snap4City

has been applied in many Italian (Firenze, Pisa, Livorno, Prato,

Lonato, etc.) and European cities (Antwerp, Helsinki, Santiago

De Compostela) and in their surrounding geographical area

(e.g. Tuscany, Sardinia, Lombardia but also Belgium and

Finland) [15].

III. DATA INGESTION PROCESS MODEL

Fig.2 shows the Snap4City Data Ingestion Diagram Flow

[14], [15]. In a Smart City, the first action of the Snap4City

data ingestion process is the Road Graph Setup collecting

data on streets coming from city government as well as open

datasets (e.g. Open Street Map). In this way Points of Interest

(POI), Sensors, Citizens, etc., can be connected to road graphs

and located in a specific place of the city, not only based on

their coordinates but also on the streets and civic numbers.

After this, it is necessary to understand if a dataset is i) only

static, or ii) has also some dynamic fields that can change in

future. The first case is the easiest one, a typical sample are

the Point of Interests (POIs), data that are usually available in

the Official Open Data Portals in Europe, most of them based

on CKAN. For this reason, a solution to automate the process

from CKAN to KB via a customized plugin (DataGate) has

been integrated in Snap4City. It regularizes the open data via

a template to be filled by the data providers, after that the

data are processed by an Extract Transform and Load process

(ETL), capable to map each data in the Km4City multi-

ontology. The ETL is executed on a distributed Scheduler

Fig. 2. Snap4City Data Ingestion Diagram Flow.

called DISCES and the data are automatically put in the

Snap4City Knowledge Base [14], [15]. The second case is

more interesting, as a non-regular dataset can have both static

and dynamic info. Many kind of data belong to this case: a car

park monitoring system has both a fixed location and registers

data every minute (i.e. number of free slots, the amount of

time each slot is free or occupied); a sensor for registering the

number of people coming in a museum has a fixed location

and counts the number of people every second; an air quality

sensor placed on a bus continuously moves as the bus moves

and takes measurements in real time, etc. If the data are not

regular, different methodologies to classify/manage/exchange

data (e.g Push or Pull) must be adopted, via ETL or IoTApp.

In this paper, a relevant part is devoted to the comparison of

these different ingestion tools, making an evaluation in terms

of cost, complexity, and development time as shown in Fig.2.

A. ETL Data Ingestion

For the development of ETL processes, the Pentaho Kettle

Open Source tool has been integrated in the system. For each

dataset, two ETLs processes are created: (1) Static, addressing

fixed aspects and ingesting them into the KB; and (2) Periodic,

that is put in execution on the DISCES, depending on the data

frequency variability. The data storage can be implemented

via: a) a Big Data Cluster (based on HDFS, HBase, Phoenix);

or b) an Indexing and Aggregating tool (e.g., based on Elastic

Search). Each solution has its pros and cons, but in both cases

replica and federations are set up, with vertical and horizontal

scaling, thus creating a large data store with some indices. In

both cases, queries are performed by using NoSQL approaches

via API.

B. IoT Data Ingestion

IoT data is typically sent in push, using a publisher/sub-

scriber protocol. IoT devices are registered in an IoT Broker

which is registered on the Snap4City IoTDirectory. When a

new IoT Device is created: i) a set of static data is registered

on the KB; then ii) a command to the storage system for

the subscription to the corresponding IoT Broker is sent. In

case of HBase, for each new entity, a specific process is set

up for writing into the storage, and it is implemented by

239

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Ingestion via NodeRED IotApplications and Pentaho ETL processes
in the Snap4City Portal.

using ETL or IoTApp. On the contrary, for Elastic Search,

a scalable NIFI Apache ingestion process is implemented to

automatically subscribe the IoT Brokers on all its devices,

and feed the Elastic Search engine, thus creating the data

shadow for IoT data. In our system, we have adopted an IoT

App flow for registering the data model, as an IoT Device,

on both the IoT Broker and IoT Directory via the Snap4City

APIs. A second IoT App flow registers all the metadata and

descriptors for modeling the new entry into the KB. When a

new dataset needs to be ingested, if the methodology adopted

is ETL or IoTApp, an ad-hoc semantic mapping to connect

each sensor/IoTDevice, POI, etc. to the KM4City ontology is

realized. The mapping generates a set of RDF Triples based

on the KM4City classes and properties and then adds them to

the Snap4City KB, realized in Virtuoso. The IoT Applications

can be used for data ingestion both in pull and push, while

ETL collect data only in PULL. In case of ETL, the work

of creating the triples must be done by the developers (using

Karma data integration tool). If the ingestion method adopted

is IoTApp, the most relevant triples are automatically created

by the system and added to the KB when each sensor is

registered (the registration is done with an easy to use web

tool also in bulk), then developers are free to add other specific

RDF triples via IoTApp. Developers are supported all the time,

thanks to the Living Lab and co-creation activities available

on the Snap4City platform.

C. Formal Model: IoT Ingestion vs Ontology
The following describes the semantic connections that are

automatically added when a user registers his/her new sensor
or IoT Device.

km4cr:eCharging_18XP22
geo:long "11.261270001652804"ˆˆxsd:float;
geo:lat "43.77000404722702"ˆˆxsd:float;
http://schema.org/name "eCharging_18XP22";
rdf:type sosa:Sensor;
rdf:type km4c:Charging_stations;
ssn:implements km4cr:iot/ChargingStation;
km4c:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingState;
km4c:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingStateValue;
km4c:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/dateObserved;
km4c:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/stationState;
km4c:hasAttribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/stationStateValue;
sosa:observes km4cr:value_type/charging_station_state;
sosa:observes km4cr:value_type/charging_state;
sosa:observes km4cr:value_type/timestamp;

ssn:hasSystemCapability
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/systemCapability;
iot-lite:exposedBy km4cr:iot/orionFirenze-UNIFI;
km4c:protocol "ngsi";
km4c:format "json";
km4c:model "ChargingStationModel";
km4c:producer "Comune di Firenze";
km4c:macaddress "...";
km4c:organization "Firenze".

#for each attribute
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22/chargingState
rdf:type km4c:DeviceAttribute;
km4c:order 1;
km4c:data_type "string";
km4c:value_type km4cr:value_type/charging_state;
km4c:value_name "chargingState";
km4c:value_unit "-";
km4c:value_refresh_rate "900";
km4c:different_values "0";
km4c:value_bounds "unspecified";
km4c:editable "false"ˆˆxsd:boolean;
km4c:disabled "false"ˆˆxsd:boolean.

#broker description
km4cr:iot/orionFirenze-UNIFI
rdf:type km4c:NGSIBroker;
iot-lite:endpoint "http://orion:1026";
km4c:created "2019-10-28 10:01:53";
schema:name "orionFirenze-UNIFI".

Additional triples can be manually added, for example

related to the Graph street, as the following:

km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
schema:streetAddress "VIA GIUSEPPE VERDI" .

km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22
km4c:houseNumber "15" .
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22

schema:addressRegion "FI" .
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22

schema:addressLocality "FIRENZE" .
km4cr:iot/orionFirenze-UNIFI/Firenze/eCharging_18XP22

km4c:isInRoad km4cr:RT04801703173TO .

IV. UNIFIED DATA MODEL

Data inspection for smart cities applications is faced with

multiple challenges. Data sources are heterogeneous and di-

verse, data may come from stationary or mobile sensors, social

media, web pages, etc. This large amount of data can be stored

or managed in streaming. Different data storage models may

be preferred with respect to data lakes, also basing on the data

arrival and data update frequencies. Moreover, a wide variety

of data consumers is present: some may use the data for offline

processing, others conduct online processing; data analytic

tasks are also different, some for visualization and others for

data mining and still others for prediction and early warning.

Considering all these challenges, in the smart city back office

management it is important to have a unique model and tool,

accessing and harmonizing all the information. To do this it

is necessary to map and connect data providers, technical de-

scription, processes used for ingestion, ingestion status, quality

level, relationships with other cities’ elements, processes and

tools used to collect data, data analytic, dashboards on which

the data are shown. For example, a single sensor value may be

received in push mode, the sensor is related to an IoT Device

that may also have other sensors attached and it is managed by

one or more IoT Brokers. The sensor and the IoT Device, can

be shown on Dashboards or used by some data transformation

or data analytic process. If something happens to the process,

the manager should be able to guide the technicians to solve

the problem quickly, suggesting to check the data provider,

data ingestion, communication channels, or database, etc. Data

can enter the system in different modalities, so data inspector

of Snap4City manages the data according to classification cat-

egories of the data, High Level Type (HLT). The classification

240

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

of HLT is relevant, since the model unification aims to strongly

reduce the time for data discovery and composition when

dashboards are created. The HLT or kind of Sensors can be

conceptually classified into the following classes, while their

usage is transparent for users:

• Sensor-ETL data collected “from ETL” processes running

in a periodical modality thanks to the presence of the

DISCES schedule. These are typically data collected via

PULL by server;

• Sensor-IoT sending data “From IoT Devices to the knowl-

edge base” via PUSH. These are data ingested by IOT

Brokers with a publish-subscription protocol.

• Sensor-IoT sending data “From Snap4City Dashboards to

IoT Applications.”

• Sensor-Actuator which are data messages passing “From

Snap4City Dashboards to IoT Applications.” IoT Ap-

plications or Brokers are capable of sending actuation

produced by the user via graphic widgets: switch, keypad,

button, etc.

The major HLTs are described in the following in order

of relevance: sensors, MyKPI, POI and MyPOI, Heatmaps,

Events, External Services, Special, WFS (Web Feature Ser-

vice) and WMS (Web Map Service). The HLT called MyKPI
are geo-localized Key Personal data over time and have a

time stamp and a new GPS coordinate. MyKPI provides some

metadata to allow the unified model. MyKPIs are typically

used for modeling sensors that can be moved in the city,

e.g., a pax-counter used to count the number of people in

a specific area of the city such as in a building, a museum, a

district; a PM10 located on top of the buses. MyKPIs are used

on dashboards/widgets for tracking (e.g., mobile sensors, on-

board units of cars and buses, mobile apps) and showing the

sensors position in a map to better understand the status in

a period of time and develop new city strategies. The POI
and MyPOI, are Point Of Interests and are typically used

to model static data (a fixed GPS positions). For example,

the position of restaurants, museum, benches, etc. are static

information typically modeled as POI or MyPOI. POIs are

typically collected from Open Data of the city and region.

The Heatmaps are matrices graphically representing the geo-

distribution of specific values. In most cases, the heatmaps are

expected to be depicted according to a regular grid, but sensors

are located in compliance with the city street graph, so data

sources are from non-regular grid of sensors. The regular view

is produced by some algorithms.
The Events (or Complex Events) can be generated by

operators, tickets, policeman, and planned workers in the

city. They are typically classified and thus can be shown on

Dashboard according to different filters and status.
The External Services are typically links to third party’s

web pages and services, which can be useful to directly access

to specific applications and services of the city such as: traffic

light management, waste management, general administration

of the ticketing system.
The Special are complex data records describing a situation

with an had-hoc semantic. They are typically represented in

dashboards with a dedicated widgets providing hight interac-

tivity levels. Typical samples could be: the civil protection alert

coding messages, the status of a parking area with an animated

representation of the parking lots, the status of a gate, etc.

The WFS and WMS are data which may consist of direct

links to the end point of a GIS WFS service providing a JSON

including GIS data obtained on the fly. The connection allows

access to the GIS data and also provides data to the GIS server.

For example, a connection may be with a GeoServer, or an

ArcGIS Server. This kind of data may include POI, shapes,

images, orthomaps, and a range of structured information.

Fig.4 shows the data inspector tool that models device

descriptor, values and links with other city entities, values over

time, and value of the other sensors of the same father device,

process involved for its ingestion, eventual image and licensing

details.

A. HLT Metadata

The unified data model describes HLTs by using the follow-

ing metadata for indexing them in faceted index. in addition,

the faceted index is used in Data Inspector and Dashboard

Wizard to facilitate the single data identification during data

inspection and dashboard creation. In order to enable the

faceted search, a classification is performed classifying the

metadata into: semantic, technical, healthiness, ownership and

licensing. In addition, other details are needed to manage data

sources such as ingestion processes, data provider, historical

values, eventual images and links to the tools for managing

them in case of errors or problems in the data ingestion. The

Semantic aspects include Nature and SubNature to classify

the data and take trace of the relation with the Km4City

multi-ontology classes such as mobility, energy, government,

environment, etc. In fact, Nature and SubNature are taken from

the KM4city ontology.

The Technical aspects include GPS coordinates, Value

Name (the name of data), Value Type (e.g. temperature,

velocity), Value Unit depending on the value type selected

(e.g., Km/h or m/s for the velocity), data value (the actual value

of a variable), Data Type (data format such as integer, binary,

boolean, date, date/time, float, html, url, vector, webpage,

wkt, xml, etc.). Value Type, Value Units and Data Types are

taken from a well-defined dictionary of coherent terms. In the

technical aspects, are also recovered: the last valid value, the

date and time when data was obtained, a possible view of the

data belonging to the same time series, i.e., the historical data

of the same device or source. In Fig.4A, a traffic flow sensor

(e.g. ‘METRO640’) can be selected using textual search or

setting the filters on the metadata, then a set of possible HLT

or metrics related to it are accessible. To access the value for a

given sensor, a click on the green circle and the ‘Data Source

Detail’ is popped up (Fig.4.B) is needed. Moreover, a click on

one of the metrics (Fig.4.C) in the ‘concentration’, allows to

access to the Data History Manager is shown.

Another relevant aspect is related to the data Healthiness
due to the large variability of the HLTs. To assess the data

healthiness a set of metadata are defined. The healthiness

241

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Data Inspector in Snap4city.

criteria, depends on the type of data and must be specified by

the responsible who ingests the data in the system. In some

cases more than one method may co-exist and can be:

• refresh rate (in seconds): frequency at which a new value

is expected to have. For example, if the frequency is 900

seconds and if the last value has been updated more than

900 seconds ago, data is considered old and a problem

is reported. The refresh rate can also be regarded as the

maximum duration between a valid value/sample and the

next.

• different values (expressed as an integer N). This is a

field useful to check the variability of the data values. If

a value is the same for more than N times/samples, a

problem is reported.

• value bounds are possible max and min value bounds.

If a value is over the max or under the min, a problem

is reported.

According to the model above, in order to estimate the

healthiness, it is mandatory to have a precise timestamp of the

last value obtained as collected in the set of technical aspects

of the data. In the Ingestion Process details, it is necessary to

associate various information with each single data item that

may allow the back office personnel to understand how the

data is ingested and processed. In fact, once an healthiness

problem is detected, the administrator should be directly

engaged in solving the problem inspecting the data ingestion

processes and workflows. To this end, lots of information

needs to be associated with each data item and in particular:

• Data Source, describes how the data are ingested into

the platform, which may include Datagate, IoTApp, ETL,

Java, IoT Device, Dashboards, etc.

• Links to direct access the services for managing data

and/or external web pages. Each data may have one or

more links such as Service Map, IoT Broker, DISCES

scheduler, External Open Web Pages or Snap4City Dash-

boards. Following the links a data preview is visible.

• Processes, used to ingest the data and/or to manipulate

them for data analytic. Differs on the Data Source type

managed. Moreover, the data series can be stored into

HBase or Elastic search noSQL data stores or both. In

both cases, different procedures and tools are used to

verify if the data have been correctly ingested or not.

The last aspect is related to the Ownership and Licensing.

It is mandatory for any data city administrator to have a clear

view of the ownership of the data and how these data can be

used. In case of disputations and uncertainties it is fundamental

to have a direct link to the data responsible holding the

data ownership. In the Snap4City model, an Organization is

typically related to a geo-political area, for example: Firenze

and Tuscany, Helsinki and Finland, Antwerp and Belgium,

Sardegna, etc. According to GDPR, all the data ingested start

as strictly private and the eventual access to them is granted by

instantiating specific delegations. Basing on the license, it is

possible to delegate the access to the data that can be: private,

public, accessible only for the creator or for a selected user or

group of users.

V. PERFORMANCE EVALUATION

The Snap4City Data Ingestion process is implemented to

ingest data using three main different procedures: Datagate,

ETL processes, and IoTApps. Table I shows a comparative

analysis of these three acquisition methods. Datagate is an in-

gestion tool for non-technical users. The metric considered for

the comparison is the number of datasets uploaded. As of now

15,968 datasets are present in DataGate, of which only 3.8%

have been uploaded following the Snap4City standard template

with the semantic mapping on Snap4city. On the contrary, both

the ETL processes and the IoTApps are managed by Snap4city

registered users who are more technical. Most of the datasets

242

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARATIVE ANALYSIS AMONG DATAGATE, ETLS, IOTAPPS.

Datagate ETL IoTApp
types of data managed S S, P S, P, RT
Data protocol types managed PULL PULL PULL&PUSH
Scheduling external external internal
Flows to manage N instances
of the same dataset

N N 1

Users’ technical level without medium/highlow
Development time 1,2

hours
1, 2
weeks

3, 4 days

Semantic (KM4City) standard
template

ad hoc
(man-
ual)

ad hoc
(semi-
automatic)

Developed number 1334
datasets

162 76

Mean number of blocks 0 120.333 27,67
Mean number of lines of code 0 275 229

managed in this case provide both static and dynamic data.

The dynamic data can be periodical (P) or real time (RT). A

distinction on the required technical level of the programmers

must be done: for the development of ETL, the level has to be

medium/high, while for the IoTApp, it is designed for people

with a very low technical level. In fact, the time spent to ingest

a dataset developing and scheduling an ETL process is about

one or two weeks. For the same dataset with the IoTApp, the

development time is three or four days. Both ETL processes

and IoTApp are based on block or visual programming. For

this reason a comparison among the two methodologies was

performed on the number of blocks used and the lines of code

written. It is also relevant that in the case of ETL processes

(and consequently also for Datagate that is based on many

instances of an ETL), an external scheduler is used, while for

IoTApps an internal scheduler can be set. The presence of the

internal schedule in the IoTApps also decreases the complexity

when a set of different instances for the same IoTApp (or

ETL) is managed. In the management of IoTApps, the scaling

is provided using an elastic management of containers based

on Mesos/Marathon frameworks.

VI. CONCLUSION

In this paper, a unified data ingestion model developed for

Snap4City is described. A comparison among the different

data ingestion methodologies adopted in Snap4City is con-

ducted in terms of data structures, transmission protocol used,

static or dynamic information, etc. The comparison shows that

the Datagate tool is easy to use even in the presence of massive

upload of i) static data that mainly need to be stored and not to

be reworked to provide new knowledge; and 2) static data that

have a standard set of metadata. In case of dynamic dataset, the

best methodology is IoT Apps considering time consumption,

implementation complexity, and semantic mapping.

REFERENCES

[1] A. A. Ghaemi, “A Cyber-Physical System Approach to Smart City
Development”, 2017 IEEE International Conference on Smart Grid and
Smart Cities, Singapore, July 2017.

[2] Q. Zhoua, Y. Simmhanb, V. Prasanna, “Knowledge-infused and consis-
tent Complex Event Processing over real-time and persistent streams”,
Future Generation Computer Systems 76 (2017) 391–406.

[3] A. Hefnawy, A. Bouras, C. Cherifi, “IoT for Smart City Services:
Lifecycle Approach”, 2nd IEEE International Conference on Cloud
Computing and Internet of Things(CCIOT2016), Cambridge, United-
Kingdom., pp.55, March 2016, 10.1145/2896387.2896440.hal-01531630

[4] M. Ge, H. Bangui, B. Buhnova, “Big Data for Internet of Things:
A Survey”, Future Generation Computer Systems, May 2018, DOI:
10.1016/j.future.2018.04.053

[5] S. K. Datta, C. Bonnet, “Next-Generation, Data Centric and End-to-
End IoT Architecture Based on Microservices”, 2018 IEEE International
Conference on Consumer Electronics, Asia (ICCE-Asia), June 2018.
DOI: 10.1109/ICCE-ASIA.2018.8552135

[6] L. F. Rahmana, T. Ozcelebia, J. Lukkiena, “Understanding IoT Systems:
A Life Cycle Approach”, Procedia Computer Science, Volume 130,
2018, pp. 1057-106, DOI: https://doi.org/10.1016/j.procs.2018.04.148

[7] Z. Lv, X. Li, H. Lv, W. Xiu, “BIM Big Data Storage in WebVRGIS”,
Published in: IEEE Transactions on Industrial Informatics (Early Ac-
cess), 13 May 2019, DOI: 10.1109/TII.2019.2916689

[8] A. A. Munshia, Y. A.-R. I. Mohamed, Big data framework for analytics
in smart grids, Electric Power Systems Research, 151 (2017) 369–380,
DOI: http://dx.doi.org/10.1016/j.epsr.2017.06.006

[9] S. Nadal, V. Herrero, O. Romero, A. Abelló, X. Franch, S. Vansum-
meren, D. Valerio, “A software reference architecture for semantic-aware
Big Data systems”, Information and Software Technology 90, pp. 75–92,
2017, DOI: https://doi.org/10.1016/j.infsof.2017.06.001

[10] I. A. T. Hashema, V. Changb, N. B. Anuara,K. Adewolea, I.
Yaqooba, A. Gania, E. Ahmeda, H. Chiroma, “The role of big
data in smart city”, International Journal of Information Man-
agement, Volume 36, Issue 5, October 2016, pp. 748-758, DOI:
https://doi.org/10.1016/j.ijinfomgt.2016.05.002

[11] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. M. Nguifo, “An
experimental survey on big data frameworks”, Future Generation Com-
puter Systems, Volume 86, September 2018, Pages 546-564. DOI:
https://doi.org/10.1016/j.future.2018.04.032

[12] T. Wilcoxa, N. Jinb, P. Flachc, J. Thumimd, “A Big Data
platform for smart meter data analytics”, Computers in
Industry, Volume 105, February 2019, pp. 250-259, DOI:
https://doi.org/10.1016/j.compind.2018.12.010

[13] M. Babar, F. Arif, M. A. Jan, Z. Tan, F. Khan, “Urban data man-
agement system: Towards Big Data analytics for Internet of Things
based smart urban environment using customized Hadoop”. Future
Generation Computer Systems, Volume 96, July 2019, Pages 398-
409DOI: https://doi.org/10.1016/j.future.2019.02.035

[14] C. Badii, E. G. Belay, P. Bellini, D. Cenni, M. Marazzini, M.
Mesiti, P. Nesi, G. Pantaleo, M. Paolucci, S. Valtolina, M. Soderi, I.
Zaza,“Snap4City: A Scalable IOT/IOE Platform for Developing Smart
City Applications”, IEEE Smart City Innovation, China 2018. DOI:
https://ieeexplore.ieee.org/document/8560331/

[15] P. Bellini, P. Nesi, M. Paolucci, I. Zaza, “Smart city architecture for
data ingestion and analytics: Processes and solutions”, IEEE 4th Inter-
national Conference on Big Data Computing Service and Applications,
BigDataService 2018, pp. 137-144, March 2018. DOI: 10.1109/Big-
DataService.2018.00028

[16] P. Nesi, M. Paolucci, “Supporting Living Lab with Life Cycle and Tools
for Smart City Environments”, The 24th International DMS Conference
on Visualization and Visual Languages, DMSVIVA 2018, Redwood City,
San Francisco Bay, California, USA, June 2018.

[17] M. Azzari, C. Garau, P. Nesi, M. Paolucci, P. Zamperlin, ”Smart City
Governance Strategies to better move towards a Smart Urbanism”,
The 18th International Conference on Computational Science and Its
Applications, ICCSA 2018. July 2018, Melbourne, Australia.

[18] C. Badii, P.Bellini, D.Cenni, A. Difino, P. Nesi, M. Paolucci, ”User
Engagement Engine for Smart City Strategies”, IEEE International
Conference on Smart Computing, IEEE SMARCOMP 2017, Hong
Kong.

[19] C. Badii, P. Bellini, P. Nesi, M., Paolucci, A smart city development
kit for designing Web and mobile Apps, 2017 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Computed,
Scalable Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation, 10.1109/UIC-
ATC.2017.8397569.

243

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on November 30,2020 at 17:25:08 UTC from IEEE Xplore. Restrictions apply.

